▶ 調査レポート

世界の3D細胞培養市場2022年-2027年:成長・動向・新型コロナの影響・市場予測

• 英文タイトル:3D Cell Culture Market - Growth, Trends, COVID-19 Impact, and Forecasts (2022 - 2027)

3D Cell Culture Market - Growth, Trends, COVID-19 Impact, and Forecasts (2022 - 2027)「世界の3D細胞培養市場2022年-2027年:成長・動向・新型コロナの影響・市場予測」(市場規模、市場予測)調査レポートです。• レポートコード:MRC2203A584
• 出版社/出版日:Mordor Intelligence / 2022年1月
• レポート形態:英文、PDF、116ページ
• 納品方法:Eメール(受注後2-3営業日)
• 産業分類:バイオ
• 販売価格(消費税別)
  Single User¥703,000 (USD4,750)▷ お問い合わせ
  Site Licence¥962,000 (USD6,500)▷ お問い合わせ
  Corporate License¥1,295,000 (USD8,750)▷ お問い合わせ
• ご注文方法:お問い合わせフォーム記入又はEメールでご連絡ください。
• お支払方法:銀行振込(納品後、ご請求書送付)
レポート概要
Mordor Intelligence社は、世界の3D細胞培養市場規模が2021年から2026年の間に年平均12.5%成長すると予測しています。本調査資料では、3D細胞培養の世界市場について調査・分析し、イントロダクション、調査手法、エグゼクティブサマリー、市場動向、製品別(足場あり3D細胞培養、足場なし3D細胞培養、マイクロチップ、3Dバイオリアクター)分析、用途別(創薬、組織エンジニアリング、臨床、その他)分析、エンドユーザー別(実験室・研究機関、バイオテクノロジー・製薬企業、その他)分析、地域別(北米、ヨーロッパ、アジア太平洋、中東・アフリカ、南米)分析、競争状況、市場機会・将来の傾向などの項目を掲載しています。
・イントロダクション
・調査手法
・エグゼクティブサマリー
・市場動向
・世界の3D細胞培養市場規模:製品別(足場あり3D細胞培養、足場なし3D細胞培養、マイクロチップ、3Dバイオリアクター)
・世界の3D細胞培養市場規模:用途別(創薬、組織エンジニアリング、臨床、その他)
・世界の3D細胞培養市場規模:エンドユーザー別(実験室・研究機関、バイオテクノロジー・製薬企業、その他)
・世界の3D細胞培養市場規模:地域別(北米、ヨーロッパ、アジア太平洋、中東・アフリカ、南米)
・競争状況(BiomimX SRL、CN Bio Innovations、Corning Incorporated、Hurel Corporation、InSphero AG、Lonza AG、Merck KGaA、MIMETAS BV、Nortis Inc.、Thermo Fisher Scientific、Sartorius AG、Promocell GmbH)
・市場機会・将来の傾向

The 3D cell culture market is expected to register a CAGR of 12.5% during the forecast period of 2021-2026.

The COVID-19 pandemic is expected to have a significant impact on the market. Researchers working on COVID-19 with relevant matrices for 3D cell culture and suitable for air-liquid interface culture, need to investigate in vitro the mechanisms of the systemic consequences of cell cultures and to test potential therapies in a physiological microenvironment. This is the primary reason why 3D cell cultures are used in COVID-19 research. According to an article appearing in Frontiers Online in March 2021 titled, ‘3D Tissue Models as an Effective Tool for Studying Viruses and Vaccine Development’, there are benefits of using 3D tissue culture techniques over 2D tissue culture when studying viral infections and the implications with regards to studying COVID-19. The study also found that techniques like organoids and spheroid cultures have been shown to replicate systems of viral infection more accurately than 2D cultures and to produce morphology and biochemical behaviors required to allow for viral infection in cases where 2D cultures do not.

The 3D cell culture market is witnessing stable growth due to the factors, like the use of 3D cell culture models as alternative tools for in vivo testing, development of automated large-scale cell culture systems, and rising need for organ transplantation. The 3D cell culture and co-culture models have huge benefits, since they not only enable drug safety and efficacy assessment in a more in vivo–like context than traditional 2D cell cultures, but they can eliminate the species differences that pose limitations in the interpretation of the preclinical outcomes, by allowing drug testing directly in human systems. Additionally, with the increase in demand for organ transplantation, there is likely to be a demand for 3D cell cultures as there is a need to recapitulate complex aspects of human physiology, pathology, and drug responses in vitro. According to the organdonor.gov websites of the United States Health Resources and Services Administration, 107,103 number of patients were on the national organ transplant waiting list in the year 2020. Data from the website also states that each year, 39,000 organ transplants are conducted in the United States. Thus, the increase in organ transplants is increasing demand for research models, where 3D cell cultures are used. This is expected to boost market growth.

Key Market Trends

The Microchips Segment under Product is Expected to see Significant Growth Rate Over the Forecast Period

Microchips are also called organ-on-a-chip or microsystems. Microchips can integrate microfluidic technologies with cells that are cultured within the micro fabricated 3D devices, using various techniques from the microchip industry. 2-dimensional (2D) culture models and animal models have been used for mechanism research and drug development. However, 2D models and animal models cannot mimic the physiology of human tissue, in terms of number of cell types and properties. Thus, conventional models cannot precisely reflect human and have not been able to accurately predict in vivo responses related to drug treatment. In this regard, many industries have been looking for, and developing a new platform, to replace animal models or flask cell-culture models, and recently, organs-on-a-chip (OoCs) emerged as an alternative candidate for cell experiments and drug screening. The main advantage of these chips is that they can be manufactured at low cost. Furthermore, they allow to test a wide range of concentrations in the dosage of medicine. This advantage is expected to drive the demand for microchips, primarily to considerably accelerate scientific research. In recent years, there has been innovative uses of the organ on a chip technology for drug discovery process. For example, in March 2019, the private space exploration company SpaceX announced that it plans to soon launch a Dragon cargo capsule that will contain four microchips embedded with living human cells designed to model various aspects of human physiology. This is expected to speed up analysis and glean insights on human physiology that can be used later for drug development. As a result, due to the aforementioned advantages and research in microchip 3D cell culture technologies are expected to drive the market’s growth.

North America Captured the Largest Market Share and is Expected to Retain its Dominance

North America dominates the overall 3D cell culture market with the United States being the major contributor to the market. The United States is focusing on R&D and has been making significant investments in research on 3D cell culture, for the past few years. This has resulted in technological advancements in the country. Many American applicants feature among the main patent applicants for the 3D cell culture domain. American applicants tend to develop their technologies in the United States, as well as in Asia. There have also been huge investments in the bioengineering sector in the United States over the past few years. Bio engineering involves 3D cell culture research too. According to the National Institute of Health, in 2020, the total investment in various bio engineering technologies amounted to USD 5,646, an increase from USD 5,091 in 2019. These factors have augmented the US 3D cell culture market.

Competitive Landscape

The 3D cell culture market is highly competitive and consists of several major players. In terms of market share, few of the major players currently dominate the market. The presence of major market players, such as Corning Incorporated, Lonza AG, Merck KGaA, and Thermo Fisher Scientific, is increasing the overall competitive rivalry in the market.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support
レポート目次

1 INTRODUCTION
1.1 Study Assumptions and Market Definition
1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS
4.1 Market Overview
4.2 Market Drivers
4.2.1 Use of 3D Cell Culture Models as Alternative Tools for In Vivo Testing
4.2.2 Development of Automated Large-scale Cell Culture Systems
4.2.3 Rising Need for Organ Transplantation
4.3 Market Restraints
4.3.1 Lack of Experienced and Skilled Professionals
4.3.2 Budget Restriction for Small- and Medium-sized Laboratories
4.4 Porter’s Five Forces Analysis
4.4.1 Threat of New Entrants
4.4.2 Bargaining Power of Buyers/Consumers
4.4.3 Bargaining Power of Suppliers
4.4.4 Threat of Substitute Products
4.4.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION
5.1 By Product
5.1.1 Scaffold-Based 3D Cell Cultures
5.1.1.1 Micropatterned Surface Microplates
5.1.1.2 Hydrogels
5.1.1.3 Other Products
5.1.2 Scaffold-Free 3D Cell Cultures
5.1.2.1 Hanging drop microplates
5.1.2.2 Microfluidic 3D cell culture
5.1.2.3 Other Products
5.1.3 Microchips
5.1.4 3D Bioreactors
5.2 By Application
5.2.1 Drug Discovery
5.2.2 Tissue Engineering
5.2.3 Clinical Applications
5.2.4 Other Applications
5.3 By End User
5.3.1 Research Laboratories and Institutes
5.3.2 Biotechnology and Pharmaceutical Companies
5.3.3 Other End Users
5.4 Geography
5.4.1 North America
5.4.1.1 United States
5.4.1.2 Canada
5.4.1.3 Mexico
5.4.2 Europe
5.4.2.1 Germany
5.4.2.2 United Kingdom
5.4.2.3 France
5.4.2.4 Italy
5.4.2.5 Spain
5.4.2.6 Rest of Europe
5.4.3 Asia-Pacific
5.4.3.1 China
5.4.3.2 Japan
5.4.3.3 India
5.4.3.4 Australia
5.4.3.5 South Korea
5.4.3.6 Rest of Asia-Pacific
5.4.4 Middle East and Africa
5.4.4.1 GCC
5.4.4.2 South Africa
5.4.4.3 Rest of Middle East and Africa
5.4.5 South America
5.4.5.1 Brazil
5.4.5.2 Argentina
5.4.5.3 Rest of South America

6 COMPETITIVE LANDSCAPE
6.1 Company Profiles
6.1.1 BiomimX SRL
6.1.2 CN Bio Innovations
6.1.3 Corning Incorporated
6.1.4 Hurel Corporation
6.1.5 InSphero AG
6.1.6 Lonza AG
6.1.7 Merck KGaA
6.1.8 MIMETAS BV
6.1.9 Nortis Inc.
6.1.10 Thermo Fisher Scientific
6.1.11 Sartorius AG
6.1.12 Promocell GmbH

7 MARKET OPPORTUNITIES AND FUTURE TRENDS